超碰电影在线播放_日本在线视频一区_亚洲码在线观看_国产欧美一区二区三区视频_精品久久久久99_亚洲不卡一区二区三区_2018av男人天堂

單點(diǎn)到映射:分析十篇頂刊,QFLS如何成為光伏診斷核心工具

更新時(shí)間:2025-10-23      點(diǎn)擊次數(shù):319

前言

在太陽能光伏和先進(jìn)材料研究中,準(zhǔn)費(fèi)米能級(jí)分裂(QFLS)及其空間分布映射(QFLS mapping)是理解材料、診斷器件瓶頸、指導(dǎo)新材料開發(fā)和工藝優(yōu)化的關(guān)鍵工具。

QFLS是光生載流子(電子與空穴)在非平衡態(tài)下的化學(xué)勢(shì)能差。理論上,它直接等于理想器件的開路電壓(Voc)。但實(shí)際器件中,傳輸層和電極界面存在電化學(xué)勢(shì)損失,導(dǎo)致這個(gè)理想關(guān)系"不匹配"。分析這種不匹配,是提升光伏技術(shù)的突破口。


QFLS為何在光伏研究中如此重要?

QFLS直接衡量光伏吸收層材料質(zhì)量,代表器件開路電壓的理論上限。我們通過校準(zhǔn)光致發(fā)光(PL)光譜直接測(cè)量QFLS,避開制作完整器件時(shí)的復(fù)雜界面問題。通過QFLS,能直接評(píng)估材料本身的復(fù)合活性,幫助研究者在材料開發(fā)初期了解其內(nèi)在潛力。

QFLS測(cè)量直接量化太陽能電池中的輻射復(fù)合與非輻射復(fù)合損失。非輻射復(fù)合是導(dǎo)致QFLS偏離輻射極限的主要原因。通過這個(gè)差異,能準(zhǔn)確識(shí)別電壓損失的根源:來自材料本身的體復(fù)合,還是界面問題。


解讀QFLSVoc不匹配之謎"

理論上,QFLS應(yīng)等于器件的外部開路電壓VocVoc = ΔEF/q)。但實(shí)際器件中,兩者常有差異。這個(gè)差異揭示了界面處電化學(xué)勢(shì)損失的存在。

德國Fraunhofer ISEUli Würfel教授團(tuán)隊(duì)在2021年《Energy Technology》上指出,平面鈣鈦礦太陽能電池的Voc提升了250mV,但PL信號(hào)變化不到兩倍 [1]。他們認(rèn)為,這可以用少數(shù)載流子準(zhǔn)費(fèi)米能級(jí)(QFL)向?qū)?yīng)電極方向的梯度來解釋。異質(zhì)結(jié)中載流子速度飽和可能導(dǎo)致QFL不連續(xù)。在離子運(yùn)動(dòng)影響下,不匹配現(xiàn)象更明顯。這說明,即使材料本身質(zhì)量好,如果界面電化學(xué)勢(shì)傳輸不佳,外部Voc也無法體現(xiàn)內(nèi)部QFLS的潛力。

                                              單點(diǎn)到映射:分析十篇頂刊,QFLS如何成為光伏診斷核心工具

圖片取自:Ion Movement Explains Huge VOC Increase despite Almost Unchanged Internal Quasi-Fermi-Level Splitting in Planar Perovskite Solar Cells – Fig.2


德國Potsdam UniversityMartin Stolterfoht教授團(tuán)隊(duì)在2021年《Advanced Energy Materials》中,詳細(xì)闡述了QFLS-Voc不匹配的機(jī)制 [2]。他們定義了多數(shù)載流子的選擇性因子(selectivity, Se,maj),此因子與多數(shù)和少數(shù)載流子接觸電阻有關(guān)。通過圖1的能帶圖,他們展示了選擇性與非選擇性電洞接觸層如何影響QFL的彎曲程度,進(jìn)而導(dǎo)致QFLS-Voc不匹配。低遷移率中間層的存在也會(huì)導(dǎo)致嚴(yán)重的QFLS-Voc不匹配,即使QFLS持續(xù)提升,Voc卻可能下降。Fig. 5(b)5(c)5(d)的模擬結(jié)果顯示了低遷移率中間層如何影響QFLS的梯度和Voc的下降趨勢(shì)。

單點(diǎn)到映射:分析十篇頂刊,QFLS如何成為光伏診斷核心工具

圖片取自:Mismatch of Quasi–Fermi Level Splitting and Voc in Perovskite Solar Cells – Fig.1


要快速篩選具有高效率潛力的材料,并優(yōu)化傳輸層材料,QFLS-Maper檢測(cè)設(shè)備可以提供快速且準(zhǔn)確的QFLS量測(cè),進(jìn)而預(yù)測(cè)材料的理論效率上限并生成Pseudo J-V曲線。這樣,研究者就能在組件制備前,迅速掌握材料潛力,大幅減少試錯(cuò)成本與時(shí)間。


QFLS Mapping:可視化揭示材料均勻性與缺陷

單點(diǎn)QFLS量測(cè)重要,但材料在微觀尺度上的均勻性對(duì)器件性能有決定性影響。QFLS mapping技術(shù)能提供材料表面QFLS分布的可視化圖像,讓材料優(yōu)劣一目了然。通過QFLS mapping,能直接觀察材料各區(qū)域的QFLS差異,識(shí)別局部缺陷或不均勻性問題。

英國University of CambridgeSam Stranks教授團(tuán)隊(duì)2025年《ACS Energy Letters》中,利用超光譜絕對(duì)PL成像技術(shù)獲取了次電池的QFLS映射圖 [3]。他們比較了GO/2PACz串聯(lián)電池與參考電池的QFLS分布,結(jié)果顯示GO/2PACz串聯(lián)電池在低帶隙(LBG)和寬帶隙(WBG)次電池中表現(xiàn)出更均勻的QFLS分布。這表示非輻射復(fù)合被抑制,內(nèi)部與外部電壓損失得到改善。Fig. 3(a)3(b)QFLS映像圖,以及Supplementary Fig. S14S15QFLS分布直方圖,直觀展示了不同界面層對(duì)QFLS均勻性的影響。

單點(diǎn)到映射:分析十篇頂刊,QFLS如何成為光伏診斷核心工具

圖片取自:Optimized Graphene-Oxide-Based Interconnecting Layer in All-Perovskite Tandem Solar Cells – Fig.3ab


新加坡國立大學(xué)侯毅教授團(tuán)隊(duì)2024年發(fā)表在《Energy & Environmental Science》的論文中,展示了不同鈣鈦礦薄膜的QFLS成像圖 [4]。他們發(fā)現(xiàn),經(jīng)過PhA改質(zhì)的薄膜在整個(gè)檢測(cè)區(qū)域顯示出更高的QFLS值與更佳的空間均勻性,這證明PhA能鈍化缺陷、減少非輻射復(fù)合,從而提升鈣鈦礦薄膜的光電品質(zhì)。Fig. 3(a)呈現(xiàn)了這些結(jié)果。

單點(diǎn)到映射:分析十篇頂刊,QFLS如何成為光伏診斷核心工具

圖片取自:Surpassing 90% Shockley–Queisser VOC limit in 1.79 eV wide-bandgap perovskite solar cells using bromine-substituted self-assembled monolayers – Fig.3a


透過QFLS-Maper檢測(cè)設(shè)備,研究者可以在短短3秒內(nèi)獲得QFLS可視化圖。這樣不僅能快速掌握材料整體的QFLS分布情況,而且能實(shí)時(shí)評(píng)估材料的均勻性與缺陷,對(duì)于早期研發(fā)階段的材料篩選與制程監(jiān)控,具有無可取代的優(yōu)勢(shì)。

量化能量損失:從PLQYQFLS

QFLS不僅能定性判斷材料品質(zhì),更能定量分析能量損失。QFLS的計(jì)算公式為:QFLS = kBT ln (PLQY × JG / J0,rad)。這里的PLQY是光致發(fā)光量子產(chǎn)率,JG是光生電流密度,J0,rad是暗態(tài)輻射飽和電流密度。通過這些參數(shù),能精確拆解輻射與非輻射復(fù)合損失的比例。

德國Potsdam University Martin Stolterfoht教授團(tuán)隊(duì)2020年發(fā)表在《ACS Applied Materials & Interfaces》的論文中,利用PLQYJG定量了QFLS [5]。他們發(fā)現(xiàn),通過比較測(cè)量的QFLS與輻射極限的VOCMAPI和三陽離子鈣鈦礦薄膜都存在非輻射復(fù)合損失(MAPI200 meV,三陽離子鈣鈦礦約110 meV)。他們還觀察到,在HTL/鈣鈦礦界面和鈣鈦礦/C60界面的復(fù)合損失增加。Table 2列出了這些損失的數(shù)據(jù),Supplementary Fig. S5展示了這些損失。這項(xiàng)研究說明了QFLS如何精準(zhǔn)定位復(fù)合熱點(diǎn)。

單點(diǎn)到映射:分析十篇頂刊,QFLS如何成為光伏診斷核心工具

圖片取自:Defect and Interface Recombination Limited Quasi-Fermi-Level Splitting and Open-Circuit Voltage in Mono – Fig.2


中國科學(xué)院青島生物能源與過程研究所逄淑平教授團(tuán)隊(duì)2024年《Advanced Materials》中,利用QFLS量化鈣鈦礦太陽能電池中非輻射復(fù)合造成的能量損失 [6]。他們利用EQE譜計(jì)算JG,并結(jié)合黑體輻射譜計(jì)算J0,精確評(píng)估QFLS

單點(diǎn)到映射:分析十篇頂刊,QFLS如何成為光伏診斷核心工具

圖片取自:Enhanced QuasiFermi Level Splitting of Perovskite Solar Cells by Universal DualFunctional Polymer – Fig.4b


香港理工大學(xué)李剛教授團(tuán)隊(duì)2025年《Advanced Materials》中,運(yùn)用QFLS = qVoc,rad + kBT ln(PLQY)的公式解析低VOC虧損的來源 [7]。他們發(fā)現(xiàn),在SnO2/鈣鈦礦埋藏界面處,通過其策略,能量損失Δ(VOC,rad ? QFLS)62 meV降低至34 meVFig. 4(e)Table S5展示了這些數(shù)據(jù),證實(shí)超低VOC虧損主要?dú)w因于該界面非輻射復(fù)合的消除。

單點(diǎn)到映射:分析十篇頂刊,QFLS如何成為光伏診斷核心工具

圖片取自:Buried Interface Regulation with a Supramolecular Assembled Template Enables High-Performance Perovskite Solar Cells for Minimizing the VOC Deficit – Fig.4e


QFLS-Maper檢測(cè)設(shè)備憑借其高達(dá)6個(gè)數(shù)量級(jí)的PLQY靈敏度,能從1E-4%PLQY值進(jìn)行量測(cè)。而且,它采用NIST可追溯的零組件與國際認(rèn)可的量測(cè)方式,確保了QFLS量測(cè)的準(zhǔn)確性。這使研究者能夠精確地量化非輻射復(fù)合損失,從而為材料優(yōu)化提供可靠的數(shù)據(jù)支持。

材料與界面工程的指引者

QFLS不僅是診斷工具,更是材料與界面工程的指引。通過QFLS的變化,能評(píng)估不同傳輸層材料的效果,以及化學(xué)清洗或退火等制程對(duì)吸收層表面性質(zhì)的影響。

盧森堡University of Luxembourg Susanne Siebentritt教授團(tuán)隊(duì)2018年發(fā)表在《IEEE Journal of Photovoltaics》的論文中,探討了NaFNaF+RbF后沉積處理對(duì)CIGS薄膜的影響 [8]。他們發(fā)現(xiàn),經(jīng)過NaF+RbF處理的吸收層,QFLS高于僅經(jīng)過NaF處理的樣品,這歸因于非輻射復(fù)合的減少,甚至在CdS沉積之前就已發(fā)生。即使是暴露在空氣中、表面降解的吸收層,經(jīng)過重堿金屬處理后,其QFLS也呈現(xiàn)相同的提升趨勢(shì),表明堿金屬處理改善了吸收層本身的品質(zhì)和表面。Fig. 3呈現(xiàn)了這些趨勢(shì)。

單點(diǎn)到映射:分析十篇頂刊,QFLS如何成為光伏診斷核心工具

圖片取自:Influence of Sodium and Rubidium Postdeposition Treatment on the Quasi-Fermi Level Splitting of Cu(In,Ga)Se2 Thin Films – Fig.3


阿爾及利亞Higher National School of Renewable EnergiesHichem Bencherif教授團(tuán)隊(duì)2025年《Solar Energy》中,研究了在3D鈣鈦礦中引入2D雙結(jié)層和不同電洞傳輸層的影響 [9]。他們發(fā)現(xiàn),這些優(yōu)化提高了PLQYQFLS,表明非輻射損失降低。Fig. 5Table 6展示了這些提升的效果。

單點(diǎn)到映射:分析十篇頂刊,QFLS如何成為光伏診斷核心工具

圖片取自:Achieving Quasi-Fermi level splitting near its radiative limit in efficient and stable 2D/3D perovskite solar Cells: Detailed balance model – Fig.5a


QFLS-Maper檢測(cè)設(shè)備能進(jìn)行快速的分層QFLS測(cè)試,并支持原位時(shí)間相變化的PL分析。研究者能在制備過程中,逐層評(píng)估每種材料對(duì)整體性能的影響,迅速辨識(shí)瓶頸,優(yōu)化制程條件與材料選擇。

深入探究載流子動(dòng)力學(xué)與缺陷控制

QFLS不僅與宏觀的器件性能相關(guān),更深入反映微觀的載流子濃度、壽命和摻霧水平。更高的QFLS,可能意味著更低的復(fù)合活性,也可能指示更高的摻雜濃度。要精確區(qū)分這兩種效應(yīng),需要QFLS與其他測(cè)量方法的結(jié)合。

中國河南大學(xué)杜祖亮教授團(tuán)隊(duì)于2023年《Nature Communications》中,探討了如何通過增加QFLS來降低量子點(diǎn)發(fā)光二極管的熱產(chǎn)生 [10]。他們發(fā)現(xiàn),對(duì)于給定電子密度,如果薄膜的吸收率不變,減少QD的堆積密度可以增加電子QFLS。這項(xiàng)研究雖然針對(duì)LED,但其核心思想——通過優(yōu)化載流子管理來提升QFLS,同樣適用于光伏領(lǐng)域。


單點(diǎn)到映射:分析十篇頂刊,QFLS如何成為光伏診斷核心工具

圖片取自:Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-Fermi-level splitting – Fig1b


QFLS-Maper檢測(cè)設(shè)備不僅能快速獲取QFLS數(shù)據(jù),其多模態(tài)功能也允許與其他測(cè)量技術(shù)結(jié)合,例如時(shí)間分辨PLTRPL),從而更全面地分析載流子壽命、摻雜濃度及缺陷密度等深層物理機(jī)制。


結(jié)語

QFLS及其映射技術(shù)已成為光伏研究的工具。它不僅提供了量化能量損失的手段,更在材料篩選、界面工程、制程優(yōu)化和基礎(chǔ)物理理解方面,發(fā)揮指引作用。從宏觀的器件性能診斷,到微觀的載流子動(dòng)力學(xué)與缺陷控制,QFLS提供了多維度的洞察力,加速了新一代高效能光伏器件的開發(fā)進(jìn)程。掌握并善用QFLS分析,是任何從事光伏材料與器件研究的專業(yè)人員的重要技能。

參考文獻(xiàn)

1.            Herterich, J., Unmüssig, M., Loukeris, G., Kohlst?dt, M., & Würfel, U. (2021). Ion movement explains huge VOC increase despite almost unchanged internal quasi-fermi-level splitting in planar perovskite solar cells. Energy Technology, 9(4), 2001104. DOI: 10.1002/ente.202001104

2.            Warby, J., Shah, S., Thiesbrummel, J., Gutierrez-Partida, E., Lai, H., Alebachew, B., Grischek, M., Yang, F., Lang, F., Albrecht, S., Fu, F., Neher, D., & Stolterfoht, M. (2023). Mismatch of quasi–fermi level splitting and Voc in perovskite solar cells. Advanced Energy Materials. DOI: 10.1002/aenm.202303135

3.            Fitzsimmons, M. R., Roose, B., Han, Y., Kang, T., Chiang, Y.-H., Huang, C.-S., Lu, Y., Yang, T. C.-J., Chosy, C., Guan, S., Anaya, M., & Stranks, S. D. (2025). Optimized Graphene-Oxide-Based Interconnecting Layer in All-Perovskite Tandem Solar Cells. ACS Energy Letters, 10(2), 713–725. DOI: 10.1021/acsenergylett.4c03065

4.            Wei, Z., Zhou, Q., Niu, X., Liu, S., Dong, Z., Liang, H., Chen, J., Shi, Z., Wang, X., Jia, Z., Guo, X., Guo, R., Meng, X., Wang, Y.-D., Li, N., Xu, Z., Li, Z., Aberle, A. G., Yin, X., & Hou, Y. (2025). Surpassing 90% Shockley–Queisser VOC limit in 1.79 eV wide-bandgap perovskite solar cells using bromine-substituted self-assembled monolayers. Energy & Environmental Science. Advance online publication. DOI: 10.1039/D4EE04029E

5.            Zhang, S., Shaw, P. E., Zhang, G., Jin, H., Tai, M., Lin, H., Meredith, P., Burn, P. L., Neher, D., & Stolterfoht, M. (2020). Defect/Interface Recombination Limited Quasi-Fermi Level Splitting and Open-Circuit Voltage in Mono- and Triple-Cation Perovskite Solar Cells. ACS Applied Materials & Interfaces, 12(33), 37647–37656. DOI: 10.1021/acsami.0c02960

6.            Liu, D., Chen, C., Wang, X., Sun, X., Zhang, B., Zhao, Q., Li, Z., Shao, Z., Wang, X., Cui, G., & Pang, S. (2023). Enhanced Quasi-Fermi Level Splitting of Perovskite Solar Cells by Universal Dual-Functional Polymer. Advanced Materials. Advance online publication. DOI: 10.1002/adma.202310962

7.            Wang, Z., Liang, Q., Li, M., Sun, G., Li, S., Zhu, T., Han, Y., Xia, H., Ren, Z., Yu, B., Zhang, J., Ma, R., Chandran, H. T., Cheng, L., Zhang, L., Li, D., Chen, S., Lu, X., Yan, C., Azmi, R., Liu, K., Tang, J., & Li, G. (2025). Buried Interface Regulation with a Supramolecular Assembled Template Enables High-Performance Perovskite Solar Cells for Minimizing the VOC Deficit. Advanced Materials. Advance online publication. DOI: 10.1002/adma.202418011

8.            Wolter, M. H., Bissig, B., Avancini, E., Carron, R., Buecheler, S., & Jackson, P. (2018). Influence of Sodium and Rubidium Postdeposition Treatment on the Quasi-Fermi Level Splitting of Cu(In,Ga)Se2 Thin Films. IEEE Journal of Photovoltaics, 8(5), 1320–1325. DOI: 10.1109/JPHOTOV.2018.2855113

9.            Aouni, Q., Kouda, S., Batoo, K. M., Ijaz, M. F., Sahoo, G. S., Bhattarai, S., Sasikumar, P., & Bencherif, H. (2025). Achieving Quasi-Fermi level splitting near its radiative limit in efficient and stable 2D/3D perovskite solar Cells: Detailed balance model. Solar Energy, 286, 113144. DOI: 10.1016/j.solener.2024.113144

10.       Gao, Y., Li, B., Liu, X., Shen, H., Song, Y., Song, J., Yan, Z., Yan, X., Chong, Y., Yao, R., Wang, S., Li, L. S., Fan, F., & Du, Z. (2023). Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-Fermi-level splitting. Nature Nanotechnology, 18(10), 1168–1174. DOI: 10.1038/s41565-023-01441-z





版權(quán)所有©2025 光焱科技股份有限公司 All Rights Reserved    備案號(hào):滬ICP備2021022654號(hào)-3    sitemap.xml    管理登陸    技術(shù)支持:化工儀器網(wǎng)    
超碰电影在线播放_日本在线视频一区_亚洲码在线观看_国产欧美一区二区三区视频_精品久久久久99_亚洲不卡一区二区三区_2018av男人天堂
国产精品传媒入口麻豆| 国产欧美日韩久久| 国产福利91精品一区二区三区| 韩国视频一区二区| 久久99国产精品免费网站| 久久精品国产一区二区三| 国产一区二区不卡老阿姨| 成a人片国产精品| 粉嫩av一区二区三区在线播放| thepron国产精品| 欧美日韩在线播放一区| 欧美一级国产精品| 中文字幕二三区不卡| 亚洲无人区一区| 久久精品久久精品| 色综合久久99| 精品久久国产字幕高潮| 亚洲欧美激情在线| 韩日欧美一区二区三区| 色综合久久中文综合久久97| 91麻豆精品国产91久久久资源速度 | 精品国产91久久久久久久妲己 | 欧美人成免费网站| 国产女同性恋一区二区| 亚洲一二三区不卡| 国产成人精品三级| 欧美日韩1234| 国产精品婷婷午夜在线观看| 日韩国产欧美三级| 91在线一区二区三区| 欧美一区在线视频| 综合久久国产九一剧情麻豆| 国产一区二区在线视频| 在线综合+亚洲+欧美中文字幕| 亚洲欧美在线视频观看| 美国av一区二区| 色88888久久久久久影院野外| 欧美精品一区二区在线观看| 亚洲一区二区欧美| 99亚偷拍自图区亚洲| 精品国产乱码久久久久久图片 | 亚洲欧洲av在线| 久久精品99久久久| 欧美日韩二区三区| 亚洲精品亚洲人成人网在线播放| 国产一区二区三区在线观看免费视频| 欧美精三区欧美精三区| 亚洲欧洲日产国产综合网| 激情欧美一区二区三区在线观看| 欧美电影在哪看比较好| 亚洲高清在线精品| 欧美又粗又大又爽| 曰韩精品一区二区| 色综合久久综合网欧美综合网| 中文av字幕一区| 国产精品1024| 国产欧美精品一区二区三区四区| 国产在线播精品第三| 欧美成人猛片aaaaaaa| 日本美女视频一区二区| 在线视频中文字幕一区二区| 亚洲欧美另类小说视频| 在线视频中文字幕一区二区| 亚洲视频一区在线| 91丨porny丨在线| 亚洲人成伊人成综合网小说| jlzzjlzz亚洲日本少妇| **欧美大码日韩| 91精彩视频在线观看| 亚洲精品高清在线| 欧美日韩亚洲国产综合| 午夜影院在线观看欧美| 欧美久久免费观看| 久久精品国产在热久久| 久久综合久久99| 成人va在线观看| **欧美大码日韩| 欧美视频在线观看一区二区| 五月婷婷激情综合| 日韩欧美精品在线视频| 国产一区二区久久| 亚洲欧美日韩国产中文在线| 欧美男女性生活在线直播观看| 日韩中文欧美在线| 久久香蕉国产线看观看99| 不卡一二三区首页| 亚洲成a天堂v人片| 精品国产乱码久久久久久牛牛 | 8x福利精品第一导航| 男女激情视频一区| 国产精品美女久久久久av爽李琼| 99re这里只有精品6| 亚洲与欧洲av电影| 日韩欧美在线影院| av一本久道久久综合久久鬼色| 亚洲精品国产一区二区三区四区在线 | 亚洲精品一区二区三区99| 成人免费毛片嘿嘿连载视频| 亚洲最快最全在线视频| 日韩一本二本av| 91亚洲国产成人精品一区二区三 | 激情综合色丁香一区二区| 中文av字幕一区| 91精品国产色综合久久不卡蜜臀| 国产一区二区三区黄视频 | 国产日产精品1区| 欧美日韩一区在线| 黄色成人免费在线| 最新高清无码专区| 精品少妇一区二区三区免费观看 | 日韩一区二区高清| 99久久伊人精品| 麻豆精品一区二区综合av| 中文字幕欧美一区| 精品88久久久久88久久久| 欧美在线制服丝袜| 国产东北露脸精品视频| 丝袜a∨在线一区二区三区不卡| 国产精品视频一二| 亚洲精品在线一区二区| 欧美三级电影一区| 成人黄色小视频在线观看| 久久国产人妖系列| 亚洲一区二区三区小说| 中文字幕欧美激情一区| 欧美www视频| 欧美日韩精品一区二区三区| 99热99精品| 国产黄色精品视频| 另类小说欧美激情| 日韩av网站免费在线| 亚洲一卡二卡三卡四卡无卡久久| 国产精品日日摸夜夜摸av| 日韩情涩欧美日韩视频| 欧美日本韩国一区| 欧美日韩中字一区| 一本到高清视频免费精品| 国产高清不卡一区| 精品在线免费视频| 免费成人av在线| 日韩av一区二| 天堂一区二区在线| 亚洲一区二区三区爽爽爽爽爽 | 国产精品综合一区二区| 麻豆精品视频在线观看免费| 蜜桃精品在线观看| 蜜桃视频第一区免费观看| 免费观看30秒视频久久| 另类成人小视频在线| 麻豆精品久久久| 久草这里只有精品视频| 精品综合免费视频观看| 国内精品国产三级国产a久久 | 免费成人在线网站| 久久精品国产在热久久| 麻豆免费看一区二区三区| 视频一区视频二区中文字幕| 五月天一区二区三区| 日本美女一区二区三区| 韩国v欧美v日本v亚洲v| 国产老肥熟一区二区三区| 国产成人免费视| 99久久精品免费看| 日本韩国视频一区二区| 欧美人与性动xxxx| 日韩片之四级片| 久久精品日韩一区二区三区| 中文字幕精品一区二区精品绿巨人| 国产精品福利一区二区三区| 亚洲色图视频网| 亚洲第四色夜色| 免费成人性网站| 成人午夜在线播放| 欧美午夜一区二区三区免费大片| 欧美精品一卡二卡| 欧美精品一区二区在线观看| 亚洲视频在线观看三级| 日韩电影免费在线看| 国产精品白丝av| 色国产综合视频| 日韩视频123| 国产精品国产三级国产专播品爱网 | 蜜臀a∨国产成人精品| 国产成人av影院| 日本二三区不卡| 日韩免费视频一区| 中文字幕亚洲区| 全部av―极品视觉盛宴亚洲| 成人激情黄色小说| 91麻豆精品国产| 国产精品免费av| 亚洲一卡二卡三卡四卡无卡久久| 国产又黄又大久久| 欧美调教femdomvk| 欧美激情中文不卡| 午夜电影网亚洲视频| 成人免费视频免费观看| 日韩免费高清av| 一区二区在线观看不卡| 国产在线播精品第三|